Handedness helps homing in swimming and flying animals
نویسندگان
چکیده
Swimming and flying animals rely on their ability to home on mobile targets. In some fish, physiological handedness and homing correlate, and dolphins exhibit handedness in their listening response. Here, we explore theoretically whether the actuators, sensors, and controllers in these animals follow similar laws of self-regulation, and how handedness affects homing. We find that the acoustic sensor (combined hydrophone-accelerometer) response maps are similar to fin force maps-modeled by Stuart-Landau oscillators-allowing localization by transitional vortex-propelled animals. The planar trajectories of bats in a room filled with obstacles are approximately reproduced by the states of a pair of strong and weak olivo-cerebellar oscillators. The stereoscopy of handedness reduces ambiguity near a mobile target, resulting in accelerated homing compared to even-handedness. Our results demonstrate how vortex-propelled animals may be localizing each other and circumventing obstacles in changing environments. Handedness could be useful in time-critical robot-assisted rescues in hazardous environments.
منابع مشابه
Hitching a lift hydrodynamically - in swimming, flying and cycling
Swimming animals set the water around them moving, and flying animals generate air movements. Other animals traveling with them can save energy by exploiting these movements of the fluid medium; similarly, a cyclist can save energy by riding close behind another. A new study of dolphin mothers and calves exemplifies the advantages of moving in concert.
متن کاملMelatonin Pretreatment Enhances the Homing of Bone Marrow-derived Mesenchymal Stem Cells Following Transplantation in a Rat Model of Liver Fibrosis
Background: Bone marrow-derived mesenchymal stem cells (BMMSCs) transplantation has been considered as a promising milestone in liver fibrosis treatment. However, low amounts of homing are a major obstacle. We aimed to investigate the role of melatonin pretreatment in BMMSC homing into experimental liver fibrosis. Methods: BMMSCs were obtained, grown, propagated and preconditioned with 5 µ...
متن کاملUnifying constructal theory for scale effects in running, swimming and flying.
Biologists have treated the view that fundamental differences exist between running, flying and swimming as evident, because the forms of locomotion and the animals are so different: limbs and wings vs body undulations, neutrally buoyant vs weighted bodies, etc. Here we show that all forms of locomotion can be described by a single physics theory. The theory is an invocation of the principle th...
متن کاملThe merits and implications of travel by swimming, flight and running for animals of different sizes.
Simple models are presented of the energetics of annual migration and of central place foraging, taking account of the speed and energy cost of the journeys. They are applied to insects, fish, birds and mammals of a wide range of sizes, which travel by flapping or soaring flight, by swimming or by running. It is shown that annual migrations of several thousand kilometres are unlikely to be bene...
متن کاملThe transfer of momentum from an animal to fluid in its wake is fundamental to many swimming and flying
The vortex wake is the fluid dynamic footprint of swimming and flying animals. When an animal moves through fluid, Newton’s second and third laws together dictate that the locomotive force exerted by the fluid on the animal has a magnitude equal to the rate at which the animal imparts momentum to the fluid. Often the animal delivers this momentum in the form of rotating fluid masses called vort...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013